
Eiffel as a functional language

Bertrand Meyer

25 September 2012
Revised 25 October 2012 and 23 January 2013

Notes added, 25 January 2014
Corrections by Alexander Kogtenkov, 28 January 2014

Chair of
Software Engineering

Note

This is a working document describing plans for Eiffel
extensions

It represents no commitment on the part of the author or
Eiffel Software

Any language extensions have to be approved by the Ecma
International TC49-TG4 (the committee in charge of
Eiffel language standardization)

2

The issue

Eiffel can be used as a functional language, embedded in an
O-O one, thanks in particular to agents
Many of the fancy features that people excitedly talk about
in functional languages tend either to have simple
counterparts in Eiffel (thanks in particular to multiple
inheritance) or to have little value

 Example: “traits”
However:

 Expressing some common program patterns, especially
functional, can be wordy, sometimes very wordy

The goal of this proposal is to remove the wordiness

3

Plan

1. Sources of wordiness: an analysis
2. Library and language extensions
3. Examples
4. Semantic specification of the contextual type mechanism

4

- 1 –

Overview of the
requirements task

- 1 -
Sources of wordiness:

an analysis

5

Sources of wordiness

1. Keyword-based style
2. Limited expression sublanguage, e.g. no conditional

expressions
3. Wordiness of calling a function agent
4. Explicit typing
5. No generic features

The next slides show a wordy example, then examine these
points in turn

6

An example of wordiness

(From Nadia Polikarpova, for EiffelBase 2)
Part of a postcondition clause:
 (map • domain / upper) • for_all
 (agent
 (i: INTEGER;
 o: PREDICATE [ANY, TUPLE [G, G]]):
 BOOLEAN
 do
 Result := o • item ([map [i], map [i + 1]])
 end (?, order))

In fact this example uses an older Eiffel style; in current
Eiffel it would use the across syntax, which makes it
clearer and more concise, but we keep it as an extreme (if
exaggerated) example of a complex functional expression

7

Problem 1: keyword-based syntax

Eiffel is keyword-oriented, not symbol-oriented, e.g.
 do … end
rather than
 {…}
I did play with more symbol-oriented syntax, then realized
keywords are not the problem, especially carefully chosen, short
keywords like do and end
Earlier attempts at more symbol-oriented syntax, e.g. the
infamous !! for creation, were generally rejected by the community
In any case, keywords will be needed, and (for example) agent is
shorter than lambda
My conclusion: the general syntactic style of Eiffel should remain
what it is. The serious sources of wordiness are elsewhere

8

Problem 2: limited expression sublanguage

abs (x: INTEGER): INTEGER
 do
 if x < 0 then Result := -x else Result := x end
 end
(and I am using condensed indentation!)
There are two issues here:

 Need to assign to Result; introduces an imperative
element (assignment) for a strictly applicative need

 No conditional expressions
Of course we should not renounce Result, one of the great
innovations of Eiffel, which avoids the awful return
instruction and whose absence is sorely missed in contract
extensions, e.g. .NET languages (see its awkward
introduction in Code Contracts)
But we need to make Result implicit in simple cases

9

Problem 3: calling function agents

This is a simple problem, easier than the others

In the example, why do we have to write

 o • item ([map [i], map [i + 1]])

 (where o is a predicate), instead of just calling o on the two
arguments?

The good news: a trivial library extension, complemented by
a simple language extension, both a few slides away, make it
possible to write this more concisely and clearly

10

Problem 4: explicit typing

Eiffel is statically typed, with many benefits!
Unlike some others, Eiffel programmers actually like declaring
stuff; it makes the program readable by expressing the intent
behind every entity
But explicit declarations become tedious under combination of
 Genericity, especially classes with several generic parameters
 Agents (whose classes indeed have many parameters), especially

inline agents
Can we make typing explicit in such cases?
Does this require some kind of Hindley-Milner type inference?
(Maybe not)

11

Our example again

 (map.domain / upper) • for_all
 (agent
 (i: INTEGER;
 o: PREDICATE [ANY, TUPLE [G, G]]):
 BOOLEAN
 do
 Result := o • item ([map [i], map [i + 1]])
 end (?, order))

12

Problem 5: generic features

Eiffel does not have generic features, only generic classes
Although generally OK, this absence can limit expressiveness
Typical example: cannot add function composition to
FUNCTION* since (in FUNCTION [C, ARGS, RES]) it would
have the signature

 compose alias “@”
 (other: FUNCTION [ANY, TUPLE [RES], ?]):
 FUNCTION [ANY, ARGS, ?]

but we cannot express the type marked “?”
We could use ANY but then the typing becomes dynamic,
and we certainly do not want to forsake full static typing

13
* But wait!

Function composition: in fact…

… it is possible to declare “@” in FUNCTION, if we change
FUNCTION to have one more generic parameter X; the
signature will be

 compose alias “@”
 (other: FUNCTION [ANY, TUPLE [RES], X]):
 FUNCTION [ANY, ARGS, X]

This approach works in the current language, but like the
previous one it is too tedious to scale up to systematic usage

It does, however, provide a hint towards a usable solution

14

Problem 6

Passing arguments to an agent call requires brackets:

 a • call ([x, y, z])
 a • call ([])
 f • item ([x, y, z])

It is possible to get rid of the brackets (suggestion by
Simon Peyton-Jones at LASER, now implemented, see in
later slide)

15

- 1 –

Overview of the
requirements task

- 3 -
Library & language

extensions

16

Principles

1. Apply general Eiffel design principles (static typing,
consistency, one good way to do anything etc.)

2. Do not unreasonably increase the size of the language
3. Since this is an expressiveness discussion, avoid

defining new semantics in favor of providing new
notations for existing mechanism, following the
tradition of Eiffel’s “unfolded forms”

Indeed there is no semantic extension in what follows: it is
all about abbreviations of existing mechanisms

This property follows from our liminal observation that the
matter is not expressiveness but concision

17

o [[map [i], map [i + 1]]]

Extension A (library)

Give item, in class FUNCTION (and hence PREDICATE) the
bracket alias
This trivial change can be carried out immediately, without
any obvious drawback (e.g. compatibility)
It solves Problem 3: in the example
 o • item ([map [i], map [i + 1]])
becomes just

The brackets remain, but the expression is simpler & clearer
January 2014 note: this extension is no longer so interesting
since extension D (parenthesis alias) goes further

18

do instructions then expression end

Extension B : omit Result in queries

In a query or a query agent, as shorthand for

 do instructions ; Result := expression end

allow writing just

In the absence of instructions, the “do” part is not needed,
so that the query body becomes just

19

then expression end

Extension C: conditional expressions

Accept expressions of the form

and more generally

where the then and else clauses are always required

I believe this extension causes no syntactic ambiguity
January 2014 note: this is now implemented

20

if c then exp1 else exp2 end

if c1 then exp1 elseif c1 then exp2 ... else exp0 end

Extension D: parenthesis alias

(This was a suggestion of Alexander Kogtenkov and has
now been implemented)
In the same way that a class can have a feature with the
bracket alias, it can also declare one of its features r with
the parenthesis alias “()”
Then for a of the corresponding type, a (x, …) is a
shorthand for a • r (x, …)
The most immediate application is to agents: by giving item
the parenthesis alias we can write a (x, …) instead of
a•item (x, …)
Makes for a very natural style, e.g. in an integration loop
we just write Result := Result + step ∗ f (x),
just the way integration is explained in a math textbook

21

Extension E: implicit tuples

(This mechanism, now implemented, comes from ideas of
Alexander Kogtenkov and Emmanuel Stapf, following a
suggestion by Simon Peyton-Jones at LASER 2012)
The rule is simple: if the last formal argument of a routine is
of a tuple type, the brackets can be omitted in the
corresponding formal argument
So a call r (x, y, [u, v, w]) can be written just r (x, y, u, v, w)
There is no ambiguity and the rule gives us a clean, type-safe
form of C’s “varargs”: to obtain the equivalent of a routine
with a variable number of arguments, just declare a formal
argument of a tuple type
Of course we have always been able to do this; the new
element is that calls no longer need brackets for the tuple,
so we get the appearance of a routine with a variable number
of arguments 22

Calling agents

With the implicit tuple mechanism we can write the earlier
 o • item ([map [i], map [i + 1]])
as just
 o (map [i], map [i + 1])

This example is typical of the spirit of the extensions: the
functional mechanisms are already present in the language
thanks to agents; we are making the corresponding
notations lighter, allowing a functional-language-like
programming style for cases in which programmers deem it
appropriate. There is no semantic change, and the full
object-oriented power of Eiffel is there.

 23

Extension F: Contextual typing*

General idea:
 Allow declarations to use a type declared as “?X”, for

some fresh name X, or just “?”
 This stands for an actual type defined by the context

of use of the corresponding entities
 If these uses are all consistent with some existing

type, “?X” is understood as that type; it provides a
notational simplification allowing the programmer to
skip type declarations that can be inferred in a simple
way from the program text

 If the actual uses are consistent but do not define a
known type, the mechanism is equivalent to adding a
generic parameter to the class

24
* Possible alternate name: type-by-use

Effect of contextual types

Contextual types define no new semantics
It would be possible to avoid any contextual type by either:

 Declaring the type explicitly
 In the applicable case, introducing a formal generic

The IDE should make this clear by showing the
reconstructed (“unfolded”) form, with explicit typing, on
demand, e.g. with a tooltip showing the type as one moves
the mouse over the corresponding entity

It should also be possible to generate equivalent code that
has full explicit declarations

25

Language vs IDE

We have not completely decided what part of the contextual type
mechanism is on the language side and what part on the
environment side:
 The type inference might be used to let the IDE

(EiffelStudio) fill in the types that the user does not want to
write explicitly. With this solution the new mechanism implies
no change to the language proper, it is only a facility of the
environment

 Or the inferred types might remain unspecified in the program
text, although in the IDE it will always be possible to see them
(e.g. in tooltips) and an option will be available to add them in
the program text anyway (as with the first option)

In any case Eiffel remains a fully typed language & the type
system does not change. We are just making programmers’ life
easier.

26

Contextual typing: syntax (1) and validity

A type appearing in the declaration of a feature is of the
form “?t” for some identifier t

It is then known as a contextual type

There is no validity constraint!
 (More explanations on this follow)

Note: we do not allow contextual types in other uses of
types, such as Parent clause (for inheritance), or agent
outside of a feature declaration (e.g. in an assertion)

(An agent appearing in a feature declaration can use a
contextual type, whose scope is the entire feature)

This convention avoids issues of scope; it may be possible to
relax it in the future if it turns out to be too restrictive

27

Names of contextual types

Since a contextual type is always preceded by a “?”, there
is no need to constrain the possible names
Recommended convention: use ?X, ?Y, ?Z by default
For clarity, we might want to add a rule requiring the name
not to clash with any class name, but this proposal includes
no such restriction
The scope of such a name is the enclosing class text
The form “?” is an abbreviation for “?t” where t is a fresh
name, the same one throughout the class text

 (At some point I removed this possibility for fear or a confusion
with “?” for agents, but the context is different – types vs
values – and I think it’s OK, but it could be removed again)

28

Contextual types: syntax (2)

The following abbreviations are supported

1. In an entity declaration
 x, y, …: T
the final part “: T” can be omitted; T is then understood
to be “?t” where t is a fresh identifier

2. In a generic derivation
 C [A, B, …]
the whole parameter list [A, B, …] can be omitted, so that
the declaration only retains the class name C; the actual
parameters are then understood to be ?ta, ?tb, … where
ta, tb, … are fresh identifiers

29

Semantics of contextual types (informal)

If uses of ?X in the feature’s declaration are all compatible
with an existing type T, then ?X denotes T. In that case
the contextual type is just an abbreviation mechanism

If these uses are inconsistent, the inferred type is NONE,
with the result that the class will not compile

If they are consistent but do not include enough
information to match an existing type, then ?X is
understood as denoting a new implicit formal generic
(unconstrained) of the enclosing class

Part 5 defines this semantics rigorously

30

- 1 –

Overview of the
requirements task

- 4 -
Examples

31

Conditional expressions and agents

abs (x: INTEGER): INTEGER
 then
 if x < 0 then -x else x end
 end

previous_salary (p: PERSON): INTEGER
 local
 p: PERSON
 do
 retrieve (filename)
 p := retrieved
 then
 p.salary
 end

32

Contextual typing

An example that is possible but not necessary:

a: INTEGER

r (n: INTEGER)
 local
 i, j, k, m
 do
 a := i
 j := a
 k := 3
 print (i + m)
 end

33

The IDE will show that the
inferred type for all these

variables is INTEGER

January 2014 note: for
such simple cases the
mechanism now works

Agents made simple

Nadia’s agent example
 agent
 (i: INTEGER;
 o: PREDICATE [ANY, TUPLE [G, G]]):
 BOOLEAN
 do
 Result := o • item ([map [i], map [i + 1]])
 end
now becomes:

Note that we have to specify PREDICATE but may omit the
actual generic parameters

34

agent (i; o: PREDICATE) then o (map [i], map [i + 1]) end

Function composition made simple

In FUNCTION [C, ARGS -> TUPLE, RES]):
 compose alias “@”
 (other: FUNCTION [ANY, TUPLE [RES], ?X]):
 FUNCTION [ANY, ARGS, ?X]
 -- Function that applies current function then `other’.
 then
 agent (x: ARGS): ?X then other (item (x)) end
 end
This example could use just ? instead of ?X
Note that in the final expression:

 The parenthesis alias allows us to write other (…) as a
shorthand for item • other (…)

 The implicit tuple rule enables us to write item (x) as a
shorthand for [item (x)]

35

- 1 –

Overview of the
requirements task

- 5 -
Semantic specification

of contextual types

36

Reminder: the informal semantics

If uses of ?X in the feature’s declaration are all compatible
with an existing type T, then ?X denotes T. In that case
the contextual type is just an abbreviation mechanism

If these uses are inconsistent, the inferred type is NONE,
with the result that the class will not compile

If they are consistent but do not match an existing type,
then ?X is understood as denoting a new implicit formal
generic (unconstrained) of the enclosing class

We now define this semantics rigorously

 37

Background: conformance, minima, maxima

Conformance is a partial order relation; we write u ≤ t to express
that u conforms to t
We consider that NONE ≤ t and t ≤ ANY for any type t (this
simplifies the discussion, assuming that the conformance rule has a
special clause for expanded types)
For two sets of types E and F, E ≤ F means that t ≤ u for every
element t of E and u of F (true if either set is empty); similarly, we
may use u ≤ E and E ≤ u for an individual type u
If E ≤ u, we say that u is an upper bound of E
A least upper bound (lub) of E is an upper bound u such that t ≤ u
for any lower bound t of E; if it exists it is unique, and if it is itself
in E it is the minimum of E
A minimal element of E is an element t of E such that no other
element x of E satisfies x ≤ t ; a minimum is a minimal element, but E
may have one or more minimal elements and no minimum
Dual notions : greatest lower bound (glb), maximum, maximal element

38

Access and update sets

Underlying intuition: the access set of a type t includes all the
types whose values may have to be interpreted as t, and its update
set all the types able to interpret values of type t

The access set of a type t includes all of the following:
 The type of the source of any attachment with a target of

type t

The update set of t includes all the following:
 The type of the target of any attachment with a source of

type t
 For any use of t as actual parameter to a generic derivation,

the corresponding generic constraint (ANY for unconstrained)

39

The definition

The semantics of a contextual type x, whose access and
update sets (deprived of x) are A and U, is as follows:

 1. If there exists a type T that is a maximum of A
and a glb for U, or a minimum of U and a lub for A:T

 2. Otherwise, if A ≤ U: a fictitious new formal
generic type of the enclosing class, constrained by all
minimal elements of U if any

 3. Otherwise: NONE

40

U

A

The definition

The semantics of a contextual type x, whose access and
update sets (deprived of x) are A and U, is as follows:

 1. If A ≤ U and A ∩ U ≠ ∅: an (arbitrary) element of
A ∩ U

 2. Otherwise, if A ≤ U: a fictitious new formal
generic type of the enclosing class, constrained by all
minimal elements of U if any

 3. Otherwise: NONE

41

U

A

Using a fictitious generic parameter

For a contextual type ?X, case 3 of the definition adds to
the enclosing class C a fictitious formal generic parameter
X; this happens for composition in FUNCTION

In any use of C in a class D, the corresponding actual is
determined as follows: treat it as a contextual type of D
and resolve it as in the previous definition, except that
case 2 yields ANY (rather than a formal generic for D)

42

Notes on the semantic definition

1. The idea is that to determine the type of a contextually-
declared entity (and more generally a contextual type)
we look at all its uses, and find the type that would fit
them all, if there is one

2. There is no validity rule. We just have a mechanism that
tries to find for us the type that we meant (and were
too lazy to write), then moves on silently if everything is
OK, and otherwise forces us to clean things up, possibly
by being more explicit

3. The inference may succeed by either:
 Finding an existing type that does the job: in this

case the contextual type was just an abbreviation
 Introducing an implicit formal generic parameter

(as in the case of function composition)
43

Further notes

4. If there are both greater and lower types, the lower
ones must all be less than (conform to) the greater ones,
otherwise no choice of type will work

5. The mechanism is modular: the type inference mechanism
works at the level of a single feature (for the type a
local variable) or class (for the type of a query), as long
as we have the signature specifications of all used
features & classes

44

	Eiffel as a functional language����Bertrand Meyer���25 September 2012�Revised 25 October 2012 and 23 January 2013�Notes added, 25 January 2014�Corrections by Alexander Kogtenkov, 28 January 2014
	Note
	The issue
	Plan
	Slide Number 5
	Sources of wordiness
	An example of wordiness
	Problem 1: keyword-based syntax
	Problem 2: limited expression sublanguage
	Problem 3: calling function agents
	Problem 4: explicit typing
	Our example again
	Problem 5: generic features
	Function composition: in fact…
	Problem 6
	Slide Number 16
	Principles
	Extension A (library)
	Extension B : omit Result in queries
	Extension C: conditional expressions
	Extension D: parenthesis alias
	Extension E: implicit tuples
	Calling agents
	Extension F: Contextual typing*
	Effect of contextual types	
	Language vs IDE
	Contextual typing: syntax (1) and validity
	Names of contextual types
	Contextual types: syntax (2)
	Semantics of contextual types (informal)
	Slide Number 31
	Conditional expressions and agents
	Contextual typing
	Agents made simple
	Function composition made simple
	Slide Number 36
	Reminder: the informal semantics
	Background: conformance, minima, maxima
	Access and update sets
	The definition
	The definition
	Using a fictitious generic parameter
	Notes on the semantic definition
	Further notes

